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ABSTRACT 
We present here  a framework for the study of  molecular  variation  within a single  species. 

Information on DNA haplotype  divergence is incorporated into an analysis  of  variance format, 
derived from a matrix of squared-distances among all  pairs  of  haplotypes. This analysis  of molecular 
variance  (AMOVA) produces estimates of variance  components and F-statistic  analogs,  designated 
here as  @-statistics, reflecting the correlation of  haplotypic  diversity at different levels  of hierarchical 
subdivision. The method is flexible enough to  accommodate  several alternative input matrices, 
corresponding to different types  of  molecular data, as  well  as different types  of  evolutionary  assump- 
tions,  without  modifying the basic structure of the analysis. The significance  of the variance  compo- 
nents and @-statistics is tested using a permutational approach, eliminating the normality  assumption 
that is conventional for analysis  of  variance but inappropriate for molecular data. Application of 
AMOVA to human  mitochondrial DNA haplotype data shows that population  subdivisions are better 
resolved when  some  measure  of  molecular differences among haplotypes is introduced into the 
analysis.  At the intraspecific  level,  however, the additional information provided by knowing the exact 
phylogenetic  relations among haplotypes or by a nonlinear translation of restriction-site  change into 
nucleotide diversity  does not significantly  modify the inferred population  genetic structure. Monte 
Carlo studies show that site  sampling  does not fundamentally  affect the significance of the molecular 
variance components. The AMOVA treatment is  easily extended in several different directions and 
it constitutes a coherent and flexible  framework for the statistical  analysis  of  molecular data. 

0 UR knowledge of population  genetic diversity 
has  improved  considerably  over  the last decade, 

with the application of molecular  techniques to evo- 
lutionary  studies.  Quantitative  resolution  has im- 
proved  as  larger  numbers  of  haplotypic  markers  are 
defined  within each sample.  Moreover,  information 
on the degree of divergence  between  alleles/restric- 
tion  haplotypes/DNA  sequences has become available. 
Whenever we can  make  mutational or recombina- 
tional  assumptions about  the relationships among  hap- 
lotypes,  special  phylogenetic reconstruction algo- 
rithms  are available to characterize  evolutionary re- 
lationships more precisely  (see  reviews by FELSENSTEIN 
1988; SWOFFORD and OLSEN 1990). 

Although no precise  analytic  model  for  the 
full population  distribution of molecular  differences 
among a set  of  interconnected  haplotypes is known, 
the  expected  mean  number  of  site  differences  between 
sets of panmictic (WATTERSON 1975) and subdivided 
(SLATKIN 1987)  populations  has  been  derived  under 
simple  assumptions. When a  species  exhibits  subdivi- 
sion, we expect  both  increased  haplotypic  diversity 
and a larger  number of segregating sites for  genomes 
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sampled  from  different  demes (SLATKIN 1987). The 
use of information on the molecular  connection of 
DNA  haplotypes  should be valuable  in  population 
genetic analyses. 

Population  genetic  structure within  a species has 
traditionally  been  studied using departures of allele 
frequencies  from  panmictic  expectations.  Several es- 
timation  procedures  related  to WRIGHT’S (1 951, 
1965) F-statistics  have been  proposed for the  treat- 
ment of polymorphic systems (COCKERHAM 1969, 
1973; NEI 1977; WEIR and COCKERHAM 1984; LONG 
1986). A few studies  have  tried  to  translate  informa- 
tion  on  DNA  restriction  endonuclease  haplotypes  into 
estimates of the  magnitude of intraspecific  subdivi- 
sion.  LYNCH and CREASE (1990),  using a  phylogeny of 
haplotypes,  provide  estimates of the variance of nu- 
cleotide  diversity for  different  sampling processes. 
TAKAHATA and PALUMBI (1 985)  compute  the  fraction 
of nucleotide diversity due  to  interpopulation  genetic 
differences  and  provide  an  analogue  of NEI’S (1973) 
coefficient of  gene  differentiation ( G S T ) .  Both  meth- 
ods involve nonlinear  transformation  of  the  original 
data set  into  estimates of genetic  diversity.  Several 
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assumptions on  the underlying  evolution of the mol- 
ecule are  required, assumptions that  are  neither al- 
ways met nor generally verifiable. We need  a  more 
general  methodology  that  does  not  depend so criti- 
cally on  the specific assumptions. 

Our purpose here is to design an alternative  meth- 
odology that makes use of the available molecular 
information  gathered in population surveys, while 
remaining flexible enough to accommodate  different 
types of assumptions about  the evolution of the ge- 
netic system. We propose to extend  the work of COCK- 
ERHAM (1973), LONG (1986) and  LONG, SMOUSE and 
WOOD (1 987) on allelic correlations  among  demes to 
a  comparable analysis of haplotypic diversity. Using 
the fact that  a  conventional sum of squares (SS) may 
be written as the sum of squared  differences between 
all pairs of observations  (LI  1976), we construct  a 
hierarchical analysis of molecular variance directly 
from  the  matrix of squared-distances between all pairs 
of haplotypes. Beyond its clear relation to  an analysis 
of variance, the  method has the additional  advantage 
that several different assumptions can be imposed on 
the haplotype  differentiation process, each of which 
translates into a  different  distance  matrix, with no 
change in the  structure  of  the subsequent analysis. 
When all interhaplotypic distances are presumed 
equal,  the analysis is tantamount  to  a multiallelic (mul- 
tivariate) analysis  of variance (see WEIR and COCKER- 
HAM 1984; LONG 1986; LONG, SMOUSE and WOOD 
1987). Alternatively, we can use the mean  number of 
restriction site differences, patristic distances along  a 
given network, or nucleotide diversity as measures of 
interhaplotypic distances. 

We illustrate with an analysis of human mitochon- 
drial DNA (mtDNA)  restriction site data,  performing 
a  nested analysis of  molecular variance on five regional 
collections, each represented by two different  popu- 
lations. The hierarchical model employs “Within Pop- 
ulations” (WP),  “Among  Populations/Within  Groups” 
(AP/WG), and  “Among Groups” (AG) components of 
diversity. To illustrate the impact of different sets of 
assumptions concerning  the  origins of the haplotypic 
variants, we employ alternative distance metrics to 
examine the  amount  and  pattern of genetic subdivi- 
sion. We  use permutational  procedures  on  the  original 
interindividual  squared distance matrix to provide 
significance tests for each of the hierarchical variance 
components and  related F-statistic analogues. We also 
study the  importance of site choice on  the significance 
of the  different statistics, using resampling techniques 
(EFRON  1982). 

METHODOLOGICAL  DEVELOPMENTS 

Phenetic  distances  between  restriction  haplo- 
types: We assume that restriction analysis has been 
performed  on  a  non-recombining DNA segment.  For 
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FIGURE 1.-Example  of the steps involved  in the computations 
of the boolean vectors *pJ of mutational events. Each haplotype (hj)  
is first translated into a boolean vector (p,) of presence or absence 
of restriction sites. The second step involves the construction of  a 
phylogenetic network, where each haplotype is linked by a single 
or a series of mutational events to all the other haplotypes through 
a unique pathway. The final step is the coding of each haplotype 
(h,) as a boolean vector (*pJ) of occurrences of mutational events 
(m,) from a given haplotype chosen as a reference to h,. In this 
example, haplotype 2 has been chosen as the reference. 

N individuals assayed  with a  standard set of restriction 
enzymes, S polymorphic restriction sites are identified. 
A  restriction  haplotype (h ) ,  defined as the combina- 
tion of  presence or absence of the various restriction 
sites, may be considered  as an S-dimensional boolean 
vector of the  form 

p’ = @lpZp3P4 * * * PSI, (1) 

where p ,  = 1 if h is cut  at site s, and p ,  = 0 if it is not 
(upper  right,  Figure 1). The difference between two 
haplotypes hj and hk is then  defined as (pj - pk) 

(pj - pk)’ = [@Ij - P 1 k ) ( P Z j  

- P 2 k )  * ( P S j  - P S k ) ] .  (2) 
Each polymorphic site contributes  additional  infor- 

mation, without necessarily being evolutionarily in- 
dependent. We define  a Euclidean distance metric 
(6;) between haplotypes hj and hk as 

6; = (pj - pk)’w(pj - pk), ( 3 4  

where W is a  matrix of differential weights for  the 
various sites. The weight matrix W takes any of several 
forms,  depending  upon how we  wish to use ancillary 
information. If all sites are assumed independent  and 
equally informative, W = I, the identity matrix, and 
the distance metric is equal to  the  number of restric- 
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tion-site differences. This Euclidean metric is com- 
monly employed for population  differences (NEI and 
TAJIMA 1981),  but it may be used just as easily for 
differences  between single haplotypes. In  the case 
where W is diagonal, W = diag(w:], weighting sites 
differentially but  treating  them  as  independent, Equa- 
tion 3a can  be  rewritten as 

S 

65 = d(psj - psk)‘. (3b) 
s= 1 

The rest of the analysis does  not  depend  on which 
particular  form of W has been chosen; we will assume 
that  the weight matrix has been  set in advance, re- 
turning  to  the definition of metrics and  the choice of 
W for  the  human illustration. 

Evolutionary  distances  between  haplotypes: The 
DNA haplotypes can  sometimes be related  mutation- 
ally and  arranged  into a  network (see Figure 1). We 
may then use the  number of mutations  along the 
network as a  measure of evolutionary  divergence be- 
tween any two haplotypes. Network distance does  not 
generally  equal  phenetic  distance, either because of 
homoplasy (convergent site changes or reverse  muta- 
tions) or because the translation  from the changes we 
see to those we infer  are nonlinear (e.g., TAKAHATA 
and PALUMBI 1985;  LYNCH  and CREASE 1990). We 
can always modify the definition of the p’s and W in 
such  a way that we can apply Equation 3a to provide 
an evolutionary distance. We define  a given haplotype 
as a  vector (*p) of independent  and  unique mutational 
events,  described sequentially from any fixed position 
in the network (lower left,  Figure l),  rather  than as  a 
vector of restriction-site presence or absence indica- 
tors  (upper  right,  Figure 1). If M mutational  events 
are recognized,  each  haplotype is defined  as  a  vector 
of dimension M Z S .  Our evolutionary  distance  metric 
becomes 

*6$ (*pj - *ph)‘w(*pj - *PI). (34  

In  the absence of homoplasy and keeping W constant, 
*6$ is the same  as 6;. The important  point is that  once 
a  metric has been  set, the following is general. 

Partitioning  a  distance  matrix  into  hierarchical 
components: Our application will concern  mtDNA 
data. Consider  a haploid genetic system where  inter- 
haplotypic distances are identical to distances between 
individuals. We can arrange a set of N individuals 
from Z populations into a  distance  matrix, D2, parti- 
tioned  into  a series of submatrices  corresponding  to 
particular subdivisions: 

I [Di] . . . . .  

where the elements  of the block-diagonal submatrices 
D$ contain pairwise squared-distances (6;) between 
individuals of the same (ith)  population, and those of 
the off-diagonal matrix blocks D$ contain pairwise 
squared-distances between individuals, one  from  the 
ith and  the  other  from  the  i’th population. Individuals 
may also be  grouped at higher levels, according to 
such non-genetic  criteria  as  geography, ecological en- 
vironment, or language. 

A  conventional sum of squares  [SS(Tota~J may be 
written,  barring  a  constant (2N), as the sum of squared 
differences between all pairs of N items (LI 1976).  In 
the multidimensional case, using vectors instead of 
scalars, the conventional sum of squares becomes a 
sum of squared deviations (SSD) from  the  centroid of 
a multidimensional space. Thus, 

N 

SSD,,,I, = (xj - X)’W(xj - X) 
j= I ( 5 4  
1 N-l 

N j = 1  b] 
= - (Xj - Xk)’W(Xj - Xk), 

or 

because 65 = 0 for all haplotypes hj.  This transforma- 
tion applies equally to the total  array of individuals in 
the  data  set,  to  those within each population separately 
(within the diagonal blocks, D$), and  to those belong- 
ing to a F t i c u l a r  subdivision (within the diagonal 
blocks, DI1, Df2,  D&, and DZ2). 

Where individuals are  arranged  into populations 
and populations nested within groups  defined a priori 
on  nongenetic  criteria, we employed a  linear model 
on  the  pattern first described by COCKERHAM (1969, 
1973)  and refined upon by others (WEIR and COCK- 
ERHAM 1984; LONG 1986) 

p.- = p + ag + bjg + cjig, 

where pjis indexes the j t h  chromosome, here equiva- 
lent  to the j t h  individual (j = 1, . . . , Nk) in the  ith 
population (i = 1, . . . , Zg) in the  gth  group (g = 1, 
. . . , G), and p is the unknown expectation of plig, 
averaged over the whole study. The effects are a for 
group, b for populations and c for individuals within 
populations. The effects are assumed to  be  additive, 
random,  uncorrelated,  and  to have the associated 
variance components  (expected  squared deviations) 
a:, a,, 2 and a:, respectively. 

Relying on  the  standard decomposition, we note 
that  for any choice of hierarchical partition of the N 
individuals into  strata, we can write 

3% (6) 

SSD(Tota1) = SSD(Among Strata) (7) + SSD(Within Strata), 
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placing us  in traditional analysis of variance frame- 
work, designated here as Analysis of Molecular Vari- 
ance, AMOVA (Table 1). For  illustration, we shall 
partition the total sum of squared deviations, 
SSD(Total), into components for variation within pop- 
ulations, SSD(WP), variation among  populations 
within regional groups, SSD(AP/WG), and variation 
among  regional  groups, SSD(AG) 

Nw Nw 
G I ccf$4 

SSD(WP) = 2 jG1 '=' (84 
i=l 2Ne 

SSD(AP/WG) 

- %  i= 1 

x- 1 / 

The corresponding mean squared deviations (MSD) 
are  obtained by dividing each SSD  by the  appropriate 
degrees of freedom, as reported in Table 1. The n- 
coefficients in Table 1 represent  the  average sample 
sizes of particular  hierarchical levels, allowing for 
unequal sample sizes, 

t i - 1  

The variance components (a2's) of each hierarchical 
level are  extracted by equating  the mean squares 
(MSDs) to  their  expectations. The structure of the 
analysis is that described for F-statistics (COCKERHAM 

1969, 1973), but it allows for  the haploid transmission 
of mitochondrial genomes. It may also be useful to 
employ an analogous array of haplotypic correlation 
measures, which we shall term @-statistics to avoid 
confusion. Following COCKERHAM'S  lead, we have 

a: = (1 - @ S T ) a 2 ,  

ab' = (@ST - @ C T ) a 2 ,  ( 1 0 4  

a: = 9c7-a , 2 

where u2 = a: + a; + a:; @sT is viewed as the  corre- 
lation of random haplotypes within populations, rela- 
tive to  that of random  pairs of haplotypes drawn  from 
the whole species; @ c T  as the correlation of random 
haplotypes within a group of populations, relative to 
that of random  pairs of haplotypes drawn  from  the 
whole species, and as the correlation of the molec- 
ular diversity of random haplotypes within popula- 
tions, relative to  that of random pairs of haplotypes 
drawn  from  the  region. Still following the analogy, 
we rewrite  the  equations (loa) in terms of the 9- 
statistics 

We shall not  require it for  mtDNA,  but  for  the case 
of diploid genetic systems, the  procedure employs 
within-individual haplotypic diversity as an additional 
level, following COCKERHAM (1 973) and LONG (1 986) 
exactly. The only difficulty is that DNA haplotype 
diversity within nuclear  genes is often assayed from 
homozygous individuals, to avoid confusion over link- 
age phase in multisite heterozygotes. If one  cannot 
avoid the resulting sampling biases, one should prob- 
ably avoid the within-individual level of the hierarchy. 
The limitations arising  from the precise assumptions 
of the F-statistics treatment  (random sampling to cre- 
ate  the initial subdivisions at each level, pure  drift  and 
no migration) are almost never  met in natural  popu- 
lations. The same comments apply to the @-statistics. 
Proper  caution is necessary when interpreting these 
coefficients, but we  may nevertheless view them  as 
convenient summarizations of the packaging of ge- 
netic  information within and among populations, 
being one for  one with the variance components. 

Testing  significance of the  variance  components 
and  @-statistics: Considerable discussion has emerged 
over which method  to use for  testing  the significance 
of the variance-components (WEIR and COCKERHAM 
1984; LONG 1986; ZHIVOTOVSKY 1988). The method 
requiring  the fewest assumptions is permutational 
analysis of the null distribution  for each variance- 
component. Under  the null hypothesis, samples are 
considered as drawn  from  a global population, with 
variation due to random sampling in the  construction 
of populations. To obtain  a null distribution, we allo- 
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TABLE 1 

General design for hierarchical analysis of molecular  variance (AMOVA) 

Source of variation d.f. MSD Expected MSD 
~ ~~~ 

Among regions G - 1  MSD/(AG) u: + 12’ u; + 12“ 0;f 
Among populations within regions =I 1 . -  G MSD/(AP/WG) u: + n u! 

Among individuals  within populations N -  g., I, MSD/(WP) 0: 

Total N -  1 

cate  each individual to a  randomly  chosen  population, 
while holding sample sizes constant at  the realized 
values. This  amounts to random  permutation of the 
rows (and  corresponding columns) of the  squared- 
distance  matrix (MANTEL 1967). The variance-com- 
ponents are estimated  from each of a  large  number 
(say 1000) of permuted matrices. We use this proce- 
dure  to obtain  the null distribution and to test for  the 
significance of @ST and up. 

T w o  other  permutation schemes are useful. The 
first assumes that  the regions are real but  that  the 
populations within them are  not,  permuting individ- 
uals within regional  groups  without  regard to popu- 
lation,  a procedure used to  obtain  the null distribu- 
tions of aSc and a!. The second assumes that while 
the populations are real, the regional  groupings are 
artificial, permuting whole populations across groups. 
In this case, the sizes  of the  groups  (but  not those of 
the populations) vary with each permutational  run. 
This randomization scheme is used to obtain the null 
distribution of +CT and ui. 

Restriction site sampling: The sampling of nucle- 
otides  has  been shown to be a  major  source of varia- 
bility for estimates of molecular diversity (LYNCH  and 
CREASE 1990). One can legitimally ask whether  the 
results of our study depend  on  the particular  array of 
restriction sites employed.  We  examine the influence 
of  site  sampling on  the genetic structure of the popu- 
lations, using a site resampling plan similar to  the 
bootstrap used by EFRON (1  982). Under  the assump- 
tion that  the observed 62 sites are representative of 
all potential  mtDNA sites, we obtain  the  distribution 
of  the variance components and associated +-statistics 
by Monte  Carlo  simulation, using 500  random collec- 
tions of sites. For each collection, the  procedure is as 
follows: (a) Draw a given number of sites from  the 
observed array of 62 sites, at  random  and with replace- 
ment. Given the choice of sites, the haplotype of each 
individual is then  taken  as the combination  of the 
original  states of those  randomly chosen sites; (b) 
compute  interhaplotypic distances on  the basis of the 
newly defined haplotypes and  perform  an AMOVA 
analysis. The distances are simply computed  from 
Equation 3b, with all w: equal to 1 ; and (c) permute 
the  matrix 500 times, and test the significance of the 

different statistics with the previously described pro- 
cedures. 

ILLUSTRATION  WITH HUMAN mtDNA 
HAPLOTYPES 

Due to its high relative mutation rate (BROWN, 
GEORGE and WILSON 1979; BROWN et al. 1982), 
mtDNA  presents many distinct haplotypes in different 
demes. Prevailing maternal transmission in mammals 
(GILES et al. 1980; GYLLENSTEN et al. 1991) favors 
higher levels of population subdivision than is true  for 
nuclear DNA markers  (BIRKY,  MARUYAMA, and 
FUERST 1983; BIRKY, FUERST and MARUYAMA 1989). 
Barring  migration,  these two effects should  produce 
increasingly non-overlapping sets of restriction  hap- 
lotypes as  divergence  time between populations in- 
creases (WATTERSON 1985). Both of these  features are 
evident in human  mtDNA, which is small (16,569  bp, 
ANDERSON et al. 198 l), rapidly evolving, and  appar- 
ently free of recombination. 

Restriction haplotypes of human  mtDNA have been 
sampled from  a substantial number of populations 
(for  a review of the two main data set, see EXCOFFIER 
1990; STONEKING et al. 1990). Our purpose is to 
illustrate the methodology  described  above, rather 
than  to  reopen  the question of human  origins raised 
elsewhere (CANN, STONEKING and WILSON 1987; 
EXCOFFIER and  LANGANEY  1989; EXCOFFIER 1990; 
STONEKING et al. 1990). We consider here ten  popu- 
lations for which ample  data are available in the lit- 
erature  (Table 2). These particular  populations were 
chosen to  represent five “regional  groups” of two 
populations each (Figure 2). The samples have also 
been analyzed for polymorphism with the five restric- 
tion enzymes most commonly used in human studies, 
BamHI: GGATCC, HpaI: GTTAAC, HaeII: (A/ 
G)GCGC(T/C), AvaII: GG(T/A)CC, and MspI: 
CCGG. Among the  672 mtDNAs assayed from  these 
ten populations, 34 of 62 recognizable sites were 
found to be polymorphic. 

In a sample of 672, we cannot  expect to see all P 4  

possible haplotypes, but sample size considerations 
aside, the absence of recombination practically guar- 
antees  large  amounts of disequilibrium among  the  34 
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TABLE 2 

Haplotypic composition of the population samples by region 

Sample No. Sample  name  Reference 
Sample 

size Haplotype  frequencies' 

Asia 

1 

2 
West Africa 

3 

4 
America 

5 

6 
Europe 

7 

8 
Middle-East 

9 

10 

Tharu 

Oriental 

Wolof 

Peul 

Pima 

Maya 

Finnish 

Sicilian 

Israeli Jews 

Israeli Arabs 

BREGA et al. ( 1  986) 

JOHNSON et al. (1 983) 

SCOZZARI et al. ( 1  988) 

SCOZZARI et al. ( 1  988) 

WALLACE, GARRISON  and 
KNOWLER ( 1  985) 

SCHURR et al. (1990) 

VILKKI,  SAVONTAUS  and 
NIKOSKELAINEN ( 1  988) 

SEMINO et al. ( 1  989) 

BONN~TAMIR et al. ( 1986) 

B O N N ~ T A M I R  et al. (1986) 

1 8  9 13 28 47 48 49  50  51  52  53 54 
91 4 8 2 5 2 3 2 2 2 1 1 1 2 1 1  

1  6  8  9 12  13 27 28 29 
46 3 2 1 2 4 2 2 1 1 1  

1 2  7 10 27  39  52 64 65 66  67 68 71 
110 23 3 9 2 9  2 2 5 2 2 I I 1 2 I 

1 2 6 8 34  39 69 
47 11 1 9   1 2  2 1 1 1 

1 6  39 46 
63 59 2 1 1 

1 47 95 
37 30 4 3 

1  6  11 18 21 38  47  82  83 
110 8 7 2 4 3 8 2 2 1 1  

1  2  6 18 21 23 34 42 47 56  57  72  73 75 76  77 
90 5 0 3 9 1 1 1 1 1 1 5 1 2 1 1 1 1 1  

1  6  11 17 22 36 37  38  39 
39 1 5 1 4  1 1 4 1 1 1 1 

1  2  6  7  22  31  40  41 42 43 44 45 
- 39 2 2 1 1 1 6 2 1 1 1 1 1 1  
672 

' For each population, haplotype numbers are  reported on the first line and their absolute frequencies are shown'  in  italic on the second 
line. 

ab- 
- 4 

FIGURE 2.-Geographic location of the population samples. 

sites. The treatment we have developed  above  does 
not  require  independence of the restriction sites. Only 
35 haplotypes would be  observed if each site had been 
the subject of a single mutational  event; there is a 
high level of homoplasy. Nevertheless, all 56 haplo- 
types may be linked by single mutational  events in a 
parsimonious network  (Figure 3), with only two miss- 
ing.intermediates.  Neither of these missing haplotypes 
(probably  representing  extinct  intermediates,  rather 
than sampling holes) has been found in human studies 

to  date.  These  56 haplotypes are a subset of a much 
larger world-wide collection reviewed in EXCOFFIER 
(1990). The network presented in Figure  3 is a mini- 
mum spanning tree  (PRIM  1957), obtained by the 
algorithm  found in the NTSYS package (ROHLF 
1990). The procedure is similar to  that  producing 
Wagner  trees  (FARRIS  1970),  but differs by using the 
observed haplotypes as  the nodes of the  network, 
rather  than as branch tips of the  tree.  Wagner  trees 
and Prim networks are alternative ways of  viewing the 
same data,  but  the network better conveys the con- 
nections between the haplotypes. 

Haplotypic diversity among samples is pictured in 
Figure 4, where  the  darkened circles indicate presence 
of a given haplotype in a  particular population sample. 
A common feature of each sample is the presence of 
type 1 (the  large  central circle) in substantial frequen- 
cies. Other, less common haplotypes (2, 6,  7, 11, 39), 
are found in samples from different geographic re- 
gions. Each sample also  possesses a series of private 
haplotypes, restricted to a single sample and not found 
elsewhere. Populations within a region tend  to occupy 
similar portions of the  network,  sharing  more than 
one haplotype, and differing by small mutational 
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FIGURE 3.-Minimum spanning network of 56 haplotypes found 
among 10 populations. Each  link between haplotype represents a 
unique mutational event. Two haplotypes marked with asterisks 
have not been found among sampled human populations. The 
designation of each haplotype follows that of the publication where 
they have been first described (listed in Table 2). The universal 
haplotype 1 has been enlarged for easy recognition. 

steps. Populations in different  regions  tend  to occupy 
different  (although partially overlapping)  parts of the 
network. Regional diversification represents  both 
haplotype  frequency  changes and some degree of 
phyletic radiation, probably smoothed by gene flow. 

Alternative definitions of the distance metric: We 
have  performed hierarchical analysis  of variance on 
four  different matrices of inter-haplotypic squared 
distances, computed  from  different assumptions about 
the evolutionary process that  produced  the mtDNA 
haplotypes. The four matrics are: Dl (a standard Eu- 
clidean metric  counting  the  differences  among hap- 
lotypes), D2 (an equidistant  metric based on the idea 
that haplotypes are merely distinguishable), D3 (a  dis- 
tance  measured  along the network, but also incorpo- 
rating  additional  geographic and probabilistic infor- 
mation), and D4 (a matrix allowing for  nonlinearity of 
changes along  the  network). 

Dl: This first input  matrix is based on a  phenetic 
distance metric,  amounting  to  a simple count of the 
number of restriction-site differences between two 
haplotypes. One would choose this type of metric 
when the identities of restriction-sites are well defined 
and some haplotypes are clearly more  different  than 
others  but  where  no  network  connecting  the haplo- 
types is available. The results of our hierarchical par- 
tition are  reported in Table 3 under D l .  The propor- 
tion of the  “among  regions” variance component is 
large (2 1.12%),  but  the  “among populations/within 
region”  percentage is  low (3.49%), relative to  the 
“within populations” variance component. All three 

variance components are highly significant. We pres- 
ent  the null distributions of a:, ai and u: in Figure 5, 
obtained by the  three different  permutation proce- 
dures described above. The null distributions of a- 
statistics are highly correlated with those of the asso- 
ciated variance components  [Corr(aj;‘,@cr) > 0.99; 
Corr(ai,asc) > 0.99; Corr(a:,@.sT) < -0.991 and would 
thus have virtually identical shapes. For the permuta- 
tion of whole populations across regions, testing a: 
and (Per, there  are  945 possible ways of allocating 10 
populations to five groups of two populations each 
(1 0!/(5! 2‘)). Only one combination of populations was 
found  to give a slightly larger value than  the observed 
a:. As shown in Figure  5a,  the null distribution is 
clearly bimodal. A  certain  number of other combina- 
tions also give a: values that are almost as large as our 
observed value. Interestingly, all combinations of this 
higher peak show the two African populations 
grouped  together in a single region. On  the contrary, 
each time Peul and Wolof populations are separated 
in different regions, a: values are small and  found in 
the lower peak around zero. Large regional diversity 
may then  be  attributed  to differences between the 
African group  and all other regions, the composition 
of  which is of no real importance. This fact  would not 
have emerged from a  standard  F-ratio test. In the 
combination giving a maximum a: value, the Asiatic, 
Middle-Eastern, and Western African groups are pre- 
served,  but the Pima are  grouped with  Finns and  the 
Maya  with  Sicilians. Although clearly significant, our 
arbitrarily chosen geographic  groupings are not opti- 
mum for maximizing the  “among  region” diversity. 

The AMOVA treatment  on  the  input distance ma- 
trix Dl has  close connections with TAKAHATA and 
PALUMBI’S (1985)  technique, which leads to a GST 
analog,  after  a  nonlinear  transformation of restriction- 
site changes into nucleotide diversity estimates. With- 
out  entering  into much detail, we would merely point 
out  that TAKAHATA and PALUMRI’S equation (17), 
defining  an affinity measure within populations (f), 
may be modified as an affinity measure between any 
two haplotypes j and k ( b k )  by letting TAKAHATA and 
PALUMBI’S variable 1 be the total number of restric- 
tion-sites present in the whole collection of haplotypes, 
rather than  that  for  the specific pair of haplotypes j 
and k. Following the analogy, we also need to  define 
an affinity measure between an “individual and itself.” 
The most convenient definition is the  number of 
restriction sites for  that individual, the definition most 
in keeping with the spirit of TAKAHATA and  PALUMBI 
(1985).  These simple changes preserve  the Euclidian 
closure of the inter-haplotypic distance measure if  we 
used; = 4, + fh, - 2 f , k ,  which turns  out  to be identical 
to  our phenetic distance 6$, defined in (3a). 

D2: This second input matrix assumes that all  hap- 
lotypes are equidistant. The evolutionary relations 
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FIGURE 4.-Haplotypic diversity of each of the 10 population samples. The position of the haplotypes are identical for each population 
and  are homologous to those of Figure 3. The haplotypes found within each population sample are shown as black  circles. 

TABLE 3 

Hierarchical analysis of variance on four different square matrices of distances between haplotypes 

D, (haplotypic) Dn (multiallelic) 

Observed partition Observed partition 

Variance component Variance % total Pa @-statistics  Variance % total Pa +-statistics 

Among regions Z 0.134 21.12 0.002 ipc~=0.211 0.055 15.73 0.008 *cr= 0.157 
Among populations/regions ui 0.022 3.49 CO.0001 9sc = 0.044 0.013 3.59 CO.0001 9sc = 0.043 
Within populations US 0.478 75.39 CO.0001 0.246 0.281 80.68 <0.0001 = 0.193 

D, (Prim  network) D, (nonlinear) 

Among regions Z 0.142 21.99 0.002 @cr=0.220 0.127 IO-' 21.30 0.002 *p,=0.213 
Among populations/regions ui 0.021 3.29 CO.0001 aSc = 0.042 0.020 3.31 CO.0001 @sc = 0.042 
Within populations U: 0.484 74.72 <0.0001 9n = 0.253 0.449 lo-' 75.39 CO.0001 *sr= 0.246 

a Probability of having a  more extreme variance component and *-statistic than  the observed values by chance alone. *CT and 0.' are tested 
under random  permutations of  whole populations across regions. GsC and ui are tested under random permutation of individuals across 
populations but within the same region. and 0,' are tested under random permutation of individuals across populations without regard to 
either  their original populations or regions. 

between distinguishable haplotypes are assumed to be 
unknown,  a  standard treatment  for allozymes or other 
protein systems (see, however, RICHARDSON and 
SMOUSE 1976; RICHARDSON, SMOUSE and RICHARDSON 
1977). This  treatment is also applicable to antigenic 
systems, or even to molecular fingerprint analysis, 
where the  banding  pattern of two individuals either 
matches or does  not. The @-statistics become the usual 
multiallelic F-statistics (LONG 1986). The results of 
our hierarchical analysis are presented in Table 3 
under DP. Most of the haplotype diversity (80.68%) is 
found within each population, but  an appreciable 
amount still (15.73%) separates regions. The differ- 
ences among populations within regions are small 
(3.59%). For the two procedures  that involve permu- 
tation  of individuals across populations,  testing a:, a:, 

@ST and aSc, our observed variance components 
showed extreme values in  all  cases. Seven permuta- 
tions of whole populations across regions were found 
to yield greater ai (and @cr) than our observed value. 
Although  the  result is still significant, we clearly  lose 
geographic resolution with this metric. 

D3: Our  third matrix is based on a distance metric 
computed  along the evolutionarily parsimonious net- 
work shown in Figure 3. When several connections of 
equal length are possible for  a  particular haplotype, 
two additional  rules are used to make a choice (Ex- 
COFFIER and LANGANEY 1989). The first is a proba- 
bility criterion;  a link between two rare (<5%) haplo- 
types is  less likely than  a link between rare  and fre- 
quent (>5%) haplotypes. The second criterion is 
geographic; links between haplotypes that  are found 
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ENS, SPIELMAN and HARRIS 1981 ; NEI and TAJIMA 
198  1,  1983; KAPLAN 1983; NEI and MILLER 1990). 
For simplicity, we have used Equation 4 from NEI and 

Observed value - 0.13 1 MILLER (1990), which  yields results very  close to  the 
maximum-likelihood estimates of  NEI and TAJIMA 
(1  983).  For  each  adjacent  pair of haplotypes x and y 
on  the network, we estimate the nucleotide diversity 
d,  by 

40001 

@ 

Observed value = 0.022 
2 

,019 

Observed value = 0.478 

.60 SI 

FIGURE 5.-Null distributions of the molecular variance compo- 
nents obtained through different random permutations of the large 
matrix of squared interindividual distances Dl of dimension 672 
(see text). (a) Distribution of uz; (b) distribution of 062; (c) distribution 
of a:. 

within the same population or within the same region 
are favored  over links between types from  different 
regions. These distances differ  from  those of Dl when- 
ever we have homoplasic mutations  along the network 
(23 cases out of 57). As exemplified in Figure  1  for 
the differences  between haplotypes 3 and 5 ,  single- 
site  changes  from (+) to (-) to (+) or from (-) to (+) 
to (-) along  the  network,  scored  as  a  distance of zero 
for Dl, are scored  as  a distance of  2  for D3. The results 
are presented in Table  3, labeled as D3. The observed 
u: value accounts for a slightly larger  fraction of the 
total  genetic variability (21.99%)  than is the case for 
Dl, but  there is again one regional  combination of 
populations which produces  a  larger a: than  that 
observed,  and it is the same one described  before 
(Pima + Finns and Maya + Sicilians). The handling of 
homoplasies does  not modify the outcome. 

Dq: This  fourth  input matrix is made  up of weighted 
evolutionary distances, measured  along the PRIM net- 
work shown in Figure 3. The weighting matrix (W) is 
now a  diagonal  matrix of dimension M = 55 (total 
number of haplotypes - l),  where each w,, is equal 
to  the nucleotide diversity (d,) between  adjacent types 
xandy in the  network, so that W = diag(dk). Different 
methods have been used to estimate  nucleotide  diver- 
sity (d:y) from  restriction-site  data (ENGELS 198 1 ; Ew- 

E 

C Seredxy(e) 
e= 1 d, = 

E , (1 1) 
C Sere 

e= 1 

where E is the  number of enzyme classes examined, 
S ,  is the mean number of restriction sites present in 
haplotypes x and y for  the enzyme class e, re is the 
length of the recognition  sequence of the e-th enzyme 
class (for our enzymes re = 4, 14/3,  16/3 or 6),  and 
d,(,)  is the fraction of nucleotide  substitutions  per site 
between sequences x and y, estimated  for  the enzyme 
class e. The computation of (1 1) is quite simple in our 
case, because adjacent haplotypes are separated by 
single mutation  changes in most cases, so the  numer- 
ator involves only one  term. Substituting (1 1) in (3), 
we have 

*$ = ((*Pi - *Pk)’W’”]((*Pj - *pk)’  W1’2)’ 

= (*pj - *pk)’ W (*pj - *pk) (1 2) 
M 

*a;h = dim(*pmj - *pmk)2, 
m= 1 

where M is the total  number  mutational events or 
links between haplotypes in the minimum spanning 
network,  as  defined above. This analysis is analogous 
to  that  done  for Ds, but  here  the branches linking 
each adjacent haplotypes are of length d: instead of 
1. This weighting scheme enables us to incorporate 
the nucleotide diversity in an Euclidian framework, 
and  to  perform  an analysis very similar to  that devel- 
oped in LYNCH and CREASE (1  990),  but with consid- 
erably less computation. Using this strategy, we only 
need  to  compute  nucleotide diversity with (1  1) be- 
tween the M adjacent pairs of haplotypes on  the 
network. The nucleotide diversity between a  pair of 
nonadjacent haplotypes is the sum of the stepwise 
nucleotide diversities along  the  path  joining  these two 
haplotypes. The results of the AMOVA are again 
reported in Table  3, now labeled as D4. The figures 
for  both variance component  fractions and @-statistics 
are essentially similar to those  obtained  for Dl and 
D3, with an  important fraction of molecular diversity 
separating  regions  (21.3%).  Careful  examination of 
the  input distance matrix  (not shown) generated by 
(12) shows that  the  amount of nucleotide diversity 
emerging  from single restriction-site changes is very 
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similar for  different enzymes. Branch-lengths between 
adjacent haplotypes on the network are virtually iden- 
tical, except  for the two cases where more  than  one 
restriction-site change is involved. 

Genetic  structure  and DNA site  sampling: We 
evaluated the sensitivity to site sampling by examining 
the Dl partition  for  a  random sample of sites, with the 
number of sites ranging  from 5 to 62. We report  the 
percentages of significant values (a < 0.05) for  the 
variance components in Figure 6. These  three power 
curves are indistinguishable from those for  the @- 
statistics, which are suppressed. As anticipated,  the 
percentage  of significant results increases with the 
number of sampled sites for all statistics; a: and @’ST 

approach  100% significant outcomes when as few as 
40 sites are taken  into  account.  When 62 sites are 
randomly  sampled, ab‘ and 9sc are significant in 99.8% 
of all replicates, whereas u,‘ and  are significant 
94.8% of the time. The component of molecular 
variance among  regions  exhibits least power and re- 
quires  the largest number  of restriction sites, suggest- 
ing that differences  among  regions are  due  to specific 
sites and mutations. On the whole, however,  these 
high levels of significance show that  the  inferred ge- 
netic structure of our sampled populations is not  a 
sampling artifact and  that reliable inference  does not 
require  an inordinately  large  number of sites. We 
have not  carried  the analysis to more  than 62 sites, 
because an increase in the  number of sampled sites 
would mean the  occurrence of  new haplotypes, the 
distribution of which among  populations is unknown 
from our data. 

That conclusion is subject,  however, to  the assump- 
tion  that the 62 sites observed are representative of 
all sites of the  mtDNA molecule. Our sites, sampled 
from  an empiric  set, are, however, not  entirely  ran- 
dom. As a practical matter, restriction enzymes that 
do not  generate  restriction site variation are usually 
discarded  from the assay battery. The enzymes used 
here  are used routinely in human work precisely be- 
cause they do exhibit substantial polymorphism. They 
almost surely do  not provide  a  random  representation 
of the human  mtDNA  genome, and  our collection of 
sites is certainly biased towards excess polymorphism. 
The fact that  the variation encountered is also geo- 
graphically structured was not used as a  criterion of 
choice. Indeed, a  recent work (STONEKING et al. 1990) 
using additional enzymes revealing even greater 
polymorphism shows as much  geographic structure as 
we have demonstrated  here.  It seems probable  that  a 
truly  random sample of sites (or nucleotides), a  larger 
fraction of which would be  monomorphic, would be 
required  to  demonstrate  the same level of infra-spe- 
cific structure we have described  here. The question 
of whether our chosen genetic  markers are represent- 
ative set is one  more  often  dealt with by assumption 
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FIGURE 6.-Percentage of significant variance components as a 
function of haplotype size (in number of restriction-sites). A given 
number of sites is drawn at random with replacement from the 
original 62 restriction sites and variance component significance is 
tested by 500 permutations of the original matrix of squared 
interindividual distances (see text). This process is repeated 500 
times to find the percentage of significant outcomes at the level (Y 

= 0.05. @-statistics curves are almost identical to corresponding 
variance components and are not reported on  the graph. 

than  proof. Empirically, we see no alternative but 
testing  of the  data we have. 

LYNCH and CREASE (1  990) studied  nucleotide sam- 
pling analytically, showing that it constituted  a  major 
source  of variance in estimating diversity at  the nu- 
cleotide level. Our results are somewhat at odds with 
theirs. In  our case however, the  unit  studied for its 
diversity is not  the  nucleotide but  the haplotype, 
which is itself a collection of sites. The variance of 
haplotypic diversity due to site sampling appears  to be 
lower than  the variance of nucleotide diversity due  to 
the same sampling process. When the  number  of sites 
per haplotype is reduced, site sampling becomes in- 
creasingly important  as shown in Figure 6. For a 
haplotype with  only 5 sites a: is significant in 73% of 
all replicates, uz in 44.4%,  and ai in  only 30.8%, 
showing the importance of site sampling in this case. 

DISCUSSION 

Human  population  radiation: Hierarchical analysis 
of human  mtDNA variability shows substantial sub- 
division among  human  populations, but with a large 
fraction of the variation found within populations 
(>74%). A similar vaIue (69%) has been  derived using 
a GST approach on another human mtDNA data set 
(STONEKING et al. 1990). Our rather contrived  re- 
gional groups  exhibit  a high level  of divergence. Pop- 
ulations within regions were shown to be significantly 
(but minimally) differentiated. Our results suggest 
that extensive studies within each of  the  regions are 
needed to determine  whether  the  much  greater di- 
vergence  observed  “among  regions”  than  “among 
populations/within regions” is an  artifact of our arbi- 
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trary choice of populations,  a  sampling  consequence 
of isolation-by-distance, or whether  there  are  steep 
boundary zones of limited genetic  exchange  between 
regions.  Such zones have  come under increasing scru- 
tiny of late (BARBUJANI, ODEN  and SOKAL 1989; BAR- 
BUJANI and SOKAL 1990,  1991),  and a  generic answer 
to  the  “boundary question” will only be available from 
a  study of  more evenly spaced samples. 

Regional differentiation is more  apparent when the 
degree of difference  between haplotypes is taken  into 
account, in keeping with the observation  that molec- 
ular distances are larger  for  pairs of haplotypes drawn 
from  different  regions  than  from  the same region 
(Figure 4). This suggests that a substantial fraction of 
the mtDNA variability among regions is due  to diver- 
gent  arrays of haplotypes, ultimately attributable  to 
the  occurrence of new mutations  along the  path  to 
regional  radiation.  It is initially surprising that com- 
puting distances along  the  network only slightly 
enhances the regional  differences in our data  set. On 
further reflection, however, the results make sense. 
Homoplasies due  to  recurrent mutations mainly affect 
low frequency haplotypes that  are located at  the tips 
of the network. Both the low frequency of such hap- 
lotypes and  their network  placement will minimally 
affect the hierarchical  partition of variation. The com- 
putation of evolutionary distances along  a  network 
should yield greater additional  resolution  for  taxo- 
nomic assemblages of greater  internal  radiation, 
where  extinction of intermediates would lead to 
homoplasic mutations of higher  frequency and of 
more  central position. 

Nonlinear  transformation of restriction-site differ- 
ences into estimates of nucleotide diversity between 
haplotypes also  does  not substantially affect the hap- 
lotypic variance partition. We attribute this result to 
the low divergence  between  adjacent haplotypes on 
the network. As most of the links between  adjacent 
haplotypes involve unique restriction-site changes, 
taking into  account  the fact that a  particular site 
involves four-, five- or six-base recognition sequences 
does  not  matter much here.  Thus,  the additional 
assumptions involved in the nonlinear  translation, 
such as  uniform  substitution  rates at  different sites 
and identical substitution probabilities for  the  four 
nucleotides, may not  be necessary in delineating the 
internal  genetic  structure of a single species. However, 
such nonlinear  transformations  could  be useful if the 
analysis included individuals from  different species 
with larger  interhaplotypic  differences. 

These conclusions may depend  on  the choice of the 
network  presented in Figure  3, which was built before 
the AMOVA analyses were  performed.  Its basic struc- 
ture had  already  been determined in previous publi- 
cations (JOHNSON et al. 1983; EXCOFFIER and  LAN- 
GANEY 1989).  When  a  high level of homoplasy is 

present in the  data, as it is here,  the parsimony crite- 
rion  does  not lead to a  unique  network,  as is also the 
case for most phylogeny reconstruction  algorithms, 
and a  large  number of equally parsimonious networks 
could have been imposed. The question of  how to 
choose among equally parsimonious networks (or 
trees) is a  problem that cannot  be  settled  here. Our 
contention is merely that given a minimum spanning 
(parsimonious) network,  buttressed by frequency and 
geographic  criteria, an eminently “sensible” network, 
one can use the methods  developed here  for a useful 
partition of the  variation.  For the example at  hand, 
the  additional wrinkle of measuring distance along 
the  network  does  not  provide any additional resolu- 
tion. Whether we could do better with a  different 
network, and how to choose such a  network, we will 
leave for  a  later  paper. 

Our analysis  of regional  differences shows that  the 
geographic  criterion used to define regional groups is 
quite  reasonable as a first approximation. Slightly 
greater regional  divergence was found with an  alter- 
native partition of the populations. The European 
region contains the most internal diversity, whereas 
the  Amerindian  region contains the least. The two 
“alternative” regions Sicily + Maya and Pima + Fin- 
land  present  intermediate “within region” diversities, 
which slightly lower the total “within region” variabil- 
ity and increase the  “among  region” variance compo- 
nent.  One might  consider  that could itself be useful 
as a  criterion  for  defining  supra-population  groups. 
This situation also shows that we need  to  examine 
more closely the  extent to which each region or each 
population  contributes  to  the total molecular diver- 
sity, as the variance components or @-statistics do not 
bring us much detail of the  patterning of the species 
variability. As has already been done  for  the multial- 
lelic  case (LONG, SMOUSE and WOOD 1987), our analy- 
sis framework could be  extended  to  a  partitioning of 
the  among-population variability into pairwise popu- 
lation distance components. 

Methodological  considerations: We have intro- 
duced  an analytical method  for  studying  the  genetic 
structure of populations that permits use  of as much 
(or as little) of the available information  on the molec- 
ular nature  of DNA haplotypes as is desired. It extends 
procedures  that explicitly use an analysis of variance 
format (COCKERHAM 1969,  1973; WEIR and COCKER- 
HAM 1984; LONG 1986;  LONG, SMOUSE and WOOD 
1987) to estimate  the degree of intra-specific genetic 
subdivision. If we can legitimately assume that popu- 
lations become differentiated by drift  alone,  then we 
can expect  a  linear  relation between divergence  time 
and allelic correlation  for  short  periods (REYNOLDS, 
WEIR and COCKERHAM 1983).  In our case, population 
differences in restriction  pattern have clearly arisen 
from  genetic  drift of existing variants,  from the  intro- 
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duction of  new mutations, and  from some degree of 
gene flow, so we will not  extrapolate our results as far 
as  a  divergence-time  interpretation. 

The point of the  current exercise is neither  to 
estimate  unknown  population  parameters  from our 
variance components nor  to define exactly how or  at 
what rate these  population  differences have devel- 
oped. Our purpose here is to  demonstrate how to 
delineate the  extent of genetic  differentiation within 
and  among populations. The approach is general 
enough  to deal with any organism and  to study any 
type of structure (hierarchical or otherwise) that  one 
might wish to consider. The underlying (distance ma- 
trix)  structure of the analysis permits flexible explo- 
ration of a given data set. Several different distance 
matrices, one  for each particular set of assumptions, 
may be  taken as alternate  inputs  and  their influence 
on  the  outcome  evaluated. The relation to F-statistics 
is straightforward,  though subject to  the usual limita- 
tions. More important is the realization that  the whole 
array of least-squares methods (analysis  of variance, 
analysis of covariance, regression,  correlation, princi- 
pal coordinates analysis, factor analysis, etc.) is acces- 
sible from this same distance matrix. We have tapped 
only a small portion of the available repertoire  here. 

Significance testing with permutation  procedures is 
both easy and essentially assumption free; in particu- 
lar, we are  freed  from  the testing limitations of normal 
theory, so useful in  analysis of variance but so inap- 
propriate  here. We can address several questions with 
the same data set. We might even wish to test the 
difference between outcomes formally, based on dif. 
ferent squared-distance matrices. As the computation 
of the variance components involves only manipula- 
tion of the original  input  distance  metrics, the  out- 
come will only be as different as the inputs.  Squared- 
distance matrices may be  compared using a  normal- 
ized Mantel test (SMOUSE, LONG and SOKAL 1986). 

If one wishes to translate  restriction site differences 
into estimates of the fraction of nucleotide  differences 
between pairs of haplotypes (rjk), several procedures 
are available (ENGELS 198 1 ; EWENS, SPIELMAN and 
HARRIS  1981; NEI and TAJIMA 1981,  1983; KAPLAN 
1983; NEI and MILLER 1990), any one of  which can 
be used to modify the interhaplotypic  squared dis- 
tances in our technique.  Additional  translation may 
permit linearization of these estimates with divergence 
time. Such transformations have the additional  advan- 
tage of being  independent of the  number of restric- 
tion sites surveyed. We have seen,  however,  that this 
process does  not  fundamentally  alter  either our esti- 
mates of the variance components. Extension of this 
methodology to DNA sequence  data is straightfor- 
ward and can be achieved through a  redefinition of 
the interchromosomal distance metric. As several 
methods are already available for this purpose in the 

literature (SWOFFORD and OLSEN 1990),  one is free  to 
choose. We will content ourselves here with the ob- 
servation that  the use  of a Euclidean metric has some 
natural advantages, not  the least  of  which is that  a 
matrix of such distances can  be used for  other  pur- 
poses than phylogenetic analysis. The considerable 
variety of data types made available by molecular 
biology needs  a statistical analysis framework  that is 
coherent  but also sufficiently flexible to accommodate 
the  different types of questions inherent in each par- 
ticular situation. The AMOVA treatment  presented 
here is intended  to serve as the  beginning ofjust such 
a  framework. 
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